Eigenvalue Assignments in Multimachine Power Systems using Multi-Objective PSO Algorithm

نویسندگان

  • Yosra Welhazi
  • Tawfik Guesmi
  • Hsan Hadj Abdallah
چکیده

Applying multi-objective particle swarm optimization (MOPSO) algorithm to multi-objective design of multimachine power system stabilizers (PSSs) is presented in this paper. The proposed approach is based on MOPSO algorithm to search for optimal parameter settings of PSS for a wide range of operating conditions. Moreover, a fuzzy set theory is developed to extract the best compromise solution. The stabilizers are selected using MOPSO to shift the lightly damped and undamped electromechanical modes to a prescribed zone in the s-plane. The problem of tuning the stabilizer parameters is converted to an optimization problem with eigenvalue-based multi-objective function. The performance of the proposed approach is investigated for a three-machine nine-bus system under different operating conditions. The effectiveness of the proposed approach in damping the electromechanical modes and enhancing greatly the dynamic stability is confirmed through eigenvalue analysis, nonlinear simulation results and some performance indices over a wide range of loading conditions. Eigenvalue Assignments in Multimachine Power Systems Using MultiObjective PSO Algorithm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimachine Power System Stabilizers Design Using PSO Algorithm

In this paper, multiobjective design of multi-machine Power System Stabilizers (PSSs) using Particle Swarm Optimization (PSO) is presented. The stabilizers are tuned to simultaneously shift the lightly damped and undamped electro-mechanical modes of all machines to a prescribed zone in the s-plane. A multiobjective problem is formulated to optimize a composite set of objective functions compris...

متن کامل

Solving Multi-objective Optimal Power Flow Using Modified GA and PSO Based on Hybrid Algorithm

The Optimal Power Flow (OPF) is one of the most important issues in the power systems. Due to the complexity and discontinuity of some parameters of power systems, the classic mathematical methods are not proper for this problem. In this paper, the objective function of OPF is formulated to minimize the power losses of transmission grid and the cost of energy generation and improve the voltage ...

متن کامل

Small Signal Stability Assessment Employing PSO Based TCSC Controller with Comparison to GA Based Design

This paper aims to select the optimal location and setting parameters of TCSC (Thyristor Controlled Series Compensator) controller using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to mitigate small signal oscillations in a multimachine power system. Though Power System Stabilizers (PSSs) are prime choice in this issue, installation of FACTS device has been suggested here in or...

متن کامل

Decentralized Power System Stabilizer Design in Multimachine Power Networks Using Genetic Algorithm

The paper considers simultaneous and tuning of power system stabilizers for stabilization of power systems over a wide range of operating conditions using genetic algorithm. The power system operating at various conditions is considered as a finite set of plants. The problem of setting parameters of power system stabilizers is converted as a simple optimization problem that is solved by a genet...

متن کامل

Optimal Tuning of Power System Stabilizers Using Modified Particle Swarm Optimization

This study proposed a novel algorithm to tune and coordinate power system stabilizers (PSSs) in multi-machine power systems. For a multi-machine power system, the coordination of the PSS parameters is generally formulated as an objective function with constraints including the damping ratio and damping factor. A novel hybrid particle swarm optimization (PSO) with the passive congregation algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJEOE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015